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Let A be a square matrix of n rows and let the element in the pth row
and qth column of A be denoted by apc,; defining the square matrix A*
by the equations a*p, = &qp (where the superposed bar indicates conjugate
complex) we may construct the two norms N, = AA* and N2 = A*A of
A. These norms are in general different but when they are equal the
matrix A is said to be normal. We shall consider only the first norm
N, in what follows it being clear that our remarks apply equally to N2.

It is evident that N, = Nl*, i.e., that N, is Hermitian. With any Her-
mitian matrix H may be associated a composite form ¢(H) -= hp,xpxq

pq
assuming real values. The form 4(N,) = E(ap,xp) (>dp p) cannot take

s p P

negative values and takes the value zero only when all the sums Zap,xp are
p

zero. If, as we shall suppose, A is non-singular this means that 4(N,)
takes the value zero only when all the x's are zero, assuming positive
values otherwise. In other words N, is positively definite. If new
variables y are introduced by the formulae xp = Euspys where .U is any

unitary matrix (UU* = E, the unit matrix) 4)(N,) is transformed into a
composite form whose associated Hermitian matrix is UN,U* and ac-
cordingly this matrix is positively definite (U being necessarily non-
singular). Now the Hermitian matrix N, may be transformed' by a
unitary matrix into a diagonal matrix [N,] = UN,U* and since [N,l is
positively definite its diagonal elements Xp (which are the characteristic
numbers of N,) are positive. Hence the diagonal matrix [Pi ] whose
diagonal elements are + \/Xp is positively definite and has its square =
[N,]. This implies that the matrix Pi = U*[P,i]U is positively definite
and has its square = N,. That there exists no other positively definite
matrix Q whose square is N, is shown as follows. Any such matrix Q
would have for its characteristic numbers the positive square roots of the
characteristic numbers of N, and would, accordingly, be unitarily equiva-
lent to P, (both matrices having the same characteristic numbers):

Q = VP,V*; VV* = E.

This would imply N, VN,V* or, equivalently,

[N,] = W[N,]W*; W = UVUJ*

676



VOL. 17, 1931 MATHEMA TICS: WINTNER AND MURNAGHAN

Since [Ni] is a diagonal matrix it readily follows by direct computation
of [N1]W and W [N1] that if all the characteristic numbers of N1 are
different W is a diagonal matrix and this implies Q = P1. For then
W[P1] = [P1]W and so Q = VP1V* = U*WIJP1U*W*U = U*W[P11-
W*U = U*[P1]I = P1. If several of the characteristic numbers of N,
are equal W need not be a diagonal matrix but will nevertheless be such
'that W[P1]W* = [P1] since to each equality among the characteristic
numbers of N1 there is a corresponding equality among the characteristic
numbers of PI.2 The fact that Q = P1 follows by the argument just
given. The positively definite matrix thus determined uniquely has a
reciprocal Pl-1 and it is clear that the matrix U = P1-'A is unitary;
for UU* Pl- 'AA*P1l = E. We have, then, the representation A =
P1U of the non-singular matrix A as the product of a positively definite
matrix Pi by a unitary matrix and the representation is unique; for from
A = PiU follows AA* = P2 which (together with the positive definite
character of P1) determines P1 uniquely. P1 being determined U follows
unambiguously as P1-'A.

Using the second norm we can represent A unambiguously in the form
VP2 and it is immediately evident that V = U; for A = VP2 = VP2V*.V
and VP2V* being positively definite it follows from the proven uniqueness
of the analysis of A into the form P1U that VP2V* = P1; V = U. We
state then the following theorem:
Any non-singular square matrix A may be represented uniquely in the

forms
A = P1U = UP2,

where P1 and P2 are positively definite and U is unitary. Either of these
representations we call a polar representation (for n = 1, A is an ordinary
complex number a = ret' and Pi is the modulus r while U is the turneim).
The characteristic numbers X of the matrix A are invariants and a

fortiori unitary invariants. There are, however, other unitary invariants.
The problem of determining the complete system of unitary invariants
of an arbitrary square matrix seems to be as yet unsolved3 but we may
state the following theorem:
The characteristic numbers of the "polar coordinates" P1 and U of

A are unitary invariants of A.
In fact, from A = P1iU follows VAV* = VP1V*..VUV* (V being a

unitary matrix) and VPV* being positively definite with P1 it follows
that VP1V* and VUV* are the polar coordinates of VAV*. Hence any
unitary invariant of either P1 or U is a unitary invariant of A; in fact if
4(P1) = F(A) is a unitary invariant of A we have F(VAV*) = 4(VPlV*) =
c(Pl) = F(A) and similarly for U. In particular the symmetric functions
of the characteristic numbers of P1 and U are unitary invariants of A.
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Included among these is the sum of the squares of the characteristic
numbers of P1, i.e., the sum of ihe characteristic numbers of N1 = AA*;
this is the well-known unitary invariant Eapdpq of Frobenius.

p,q
When A is normal AA* = A*A or PU.UI*P1 = U*"P.P,U so that
I= U*PU = (U*PU)2. Hence P1 = U*P,U or UP1 = POU. Con-

versely if UP1 = P1U we have A*A = A*A so that a matrix A is normal.
when and only when its polar co6rdinates are commutable, that is, when the polar
representations A = P1U, A = UP2 coincide.

It may be mentioned that the above considerations are valid also in
the real domain. In this case the polar representation is simply the
algebraic formulation of the fact, well known for n = 3 from the kine-
matics of homogeneous linear (non-singular) deformations, that any such
deformation may be represented as a superposition of a dilatation and a
rotation (the norm AA* of A determining the ellipsoid of dilatation be-
longing to the deformation A).

1 See, for example, Weyl, H.; Gruppentheorie und Quantenmechanik, Leipzig,
pp. 19-23, 1928.

2 See Weyl, H., loc. cit.
3 Since writing the above this problem has been solved and will be treated in a forth-

coming note in these PROCEEDINGS.

NOTE ON THE HEA VISIDE EXPANSION FORMULA

BY JOSEPH M. DALLA VALLE

DEPARTMENT OF PUBLIC WELFARE, CLEVELAND, OHIO

Communicated October 27, 1931

The Expansion Formula solution of the linear differential equation
with constant coefficients

dnx dn-lx
ao-+ al-++ +any =F

dyn dyn 1

was first stated by Oliver Heaviside. Perhaps due to his rather obscure
methods of presentation, various writers have stated that the formula
was given without proof. Nevertheless, Heaviside gave two proofs of
the formula which may be traced through his writings. One of these,
which we may designate as the second of Heaviside's proofs, was dis-
cussed a few years ago by Vallarta.I Heaviside really made no clear
point of demarcation between his proofs and in all probability did not
believe any proof was necessary. The Expansion Formula was but a
single result of his devious analyses in the solution of certain differential
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